TOPOLOGY II FINAL EXAM

Total Marks: 100

Attempt all questions

- (1) Describe a CW complex structure on $\mathbb{R}P^n$, write the associated cellular complex, compute the differential maps, and hence the homology groups of these spaces. Also compute the fundamental group of $\mathbb{R}P^n$ (for all n > 0). (16+4 =20 marks)
- (2) Use the Mayer-Vietoris long exact sequence and the excision theorem to compute the homology groups of S^n (for all $n \ge 0$) in two ways. (7+7 =14 marks).
- (3) Compute the homology groups and the fundamental group of the g-holed torus M_q (for all $g \ge 0$). (10+4 =14 marks)
- (4) Compute the relative homology groups of the pair (X, A) where $X = S^1 \times S^1$ is a torus and $A = S^1 \times \{pt\}$ is a subspace of X. (10 marks)
- (5) Does there exist a retraction from the Mobius strip to its boundary circle? Justify your answer. (10 marks)
- (6) Compute the homology groups and the fundamental group of the triangular parachute obtained from the standard 2-simplex Δ² by identifying its three vertices (10+4 =14 marks)
- (7) Find the homology groups of the Klein bottle with coefficients in a field F of characteristic p > 0. Compute the fundamental group and describe the universal covering map (you can draw a picture) of the Klein bottle. (10 + 8 = 18 marks)